Welcome To The Dark Matter Digital Network

Search for alien life could remain fruitless, study finds

Given that we are unlikely to be visiting an exoplanet any time soon, astronomers have been contemplating whether it might be possible to detect indications of simple life – a biosignature – from a distance. Many think that the strongest case for extraterrestrial life would be the discovery of oxygen and methane on the same body. They also think that the likelihood of finding such a biosignature is greatest on an Earth-like planet that is orbiting a sun-like star. Astronomers who hope to search for these biosignatures in expolanets, however, may be in for a disappointment. New research finds that there is no way we can confirm that such a signature is actually the result of extraterrestrial life. The problem, it turns out, is that an exomoon’s atmosphere will be indistinguishable from the one of the planet it orbits. Searching for extraterrestrial life is no easy feat. Astronomers have to first search for a star that has planets. Then they have to ensure that there is at least one planet that orbits this star in the habitable zone, which is a region around the star in which we might expect liquid water. Finally, they have to record the faint light that originated from the bright star and was reflected off the exoplanet after having passed through its atmosphere. This faint light, even if only a handful of photons, when compared with light from the parent star is enough to give some indication of the chemicals in the atmosphere of this planet. Life as we know it creates two gases that wouldn’t naturally be present in an atmosphere at the same time – oxygen from photosynthesis and methane from microbes. Both oxygen and methane can be created independently by non-living processes, so their individual presence is of little interest. What scientists are looking for is both of them in the atmosphere of a single body. If these reactive gases are not constantly replenished by living things, they will react with each other, creating carbon dioxide and water. As a result, we should not observe them in the same atmosphere without a large, living source. In the new study, published in the Proceedings of the National Academy of Sciences, Hanno Rein at the University of Toronto and his colleagues wanted to know whether anything else could mimic this biosignature. While working through potential false positives, which are signals that would show signs of life but in reality there isn’t life, he found a big one: exomoons. Rein found that observers on Earth will not be able to tell whether the signs of methane and oxygen originate from a single celestial body, or come from two nearby worlds. This could happen because, just as Earth has a moon, there is a chance that exoplanets will have exomoons. While we have yet to find an exomoon, looking at the various moons of our solar system’s planets suggests that exomoons ought to be plentiful. However, even if they are plentiful, chances are that exomoons will be difficult to spot. More at The Conversation.

Leave a comment