Tesla beats Edison's Electrical Grid

Our society needs energy, and lots of it. If you’re reading this then the odds are astronomically good that you’re on a computer somewhere using energy, with the power cord plugged into the mysterious “black box” that is the electrical grid. The same is true if you’re reading this on a laptop or phone, which was charged from said black box even though it may not be connected at this moment. No matter where you are, you’re connected to some sort of energy source almost all the time. For almost every one of us, we have power lines leading up to our homes, which presumably connect to a power plant somewhere. This network of power lines, substations, even more power lines, and power plants is colloquially known as the electrical grid which we will be exploring in a series of articles. While the electrical grid is a little over a century old, humanity has been using various energy sources since the agricultural revolution at least. While it started with animal fat for candles, wind for milling grain, and forests for building civilizations, it moved on to coal and steam during the industrial revolution and has ended up in a huge interconnected network of power lines connected to nuclear, natural gas, coal, solar, and wind sites around the world. Regardless of the energy source, though, there’s one reason that we settled on using electricity as the medium for transporting energy: it’s the easiest way we’ve found to move it from place to place. ORIGINS OF THE COMMERCIAL GRID Although the potential to use electricity as an energy delivery method was recognized fairly early it wasn’t until Thomas Edison came along that the first practical and commercial electrical grid was implemented. His first grid supplied power to a handful of electric lights in New York using a direct current (DC) generator. Using DC has its drawbacks, though. This was an era before switch-mode power supplies, let alone the transistor itself, was invented, so it was virtually impossible to transform DC voltages. To avoid safety and cost issues the voltage of the generator was kept to a modest 100 volts. And, since resistive losses in wires are greater if the voltage is lower, this meant that essentially every block would need its own separate generator and electrical grid to be economically feasible on a larger scale. As much as Edison hoped his project would be commercially successful, the inventor of the modern electric grid was one of his direct competitors: Nikola Tesla. Tesla used an alternating current (AC) system, which meant that he could generate large amounts of power at a remote location, use a transformer to step the voltage up in order to deliver the power at minimal resistive losses even over huge distances, and then use another transformer to step the voltage back down to a safe level for consumption. Through the eye of history it’s obvious that this method would be the clear winner over Edison’s DC system, but not before a vicious battle between the two called the War of Currents took place. Read More: Hackaday

Share this post


Leave a comment